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date including dynamic pressure b1 

Compute flutter points at flight condition F 
using singular value it b2 

Determine dynamic pressure difference between 
that at present flight condition F and at b3 

predicted flutter point Fp 

If dynamic pressure difference is large take aircraft to 
flight condition Fi=F+AF and repeat steps b1-b4, but if 
small declare Fp a point on expanded flight envelope 
and repeat steps b1-b4 until expanded flight envelope 

has beendefined 
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ON-LINE u METHOD FOR ROBUST 
FLUTTER PREDICTION IN EXPANDING A 

SAFE FLIGHT ENVELOPE FOR AN 
AIRCRAFT MODEL UNDER FLIGHT TEST 

ORIGIN OF INVENTION 

The invention disclosed herein Was made by employees of 
the United States Government and may be manufactured and 
used by or for the Government for governmental purposes 
Without the payment of any royalties thereon or therefor. 

FIELD OF THE INVENTION 

This invention relates to ?ight ?utter testing, Which is the 
process of expanding the envelope that determines a range 
of ?ight conditions Within Which an aircraft is safe from 
aeroelastic instabilities. This testing must be done for all 
neW and recon?gured aircraft. 

BACKGROUND OF THE INVENTION 

Traditional methods of ?ight ?utter testing analyZe sys 
tem parameters, such as damping levels, that vary With ?ight 
condition to monitor aircraft stability. (M. W. Kehoe, “A 
Historical OvervieW of Flight Flutter Testing,” NASA-TM 
4720, October 1995.) A real-time method to estimate the 
damping levels Was developed based on a recursive 
prediction-error method. (R. Walker and N. Gupta, “Real 
Time FLutter Analysis,” NASA-CR-170412, March 1984.) 
This method Was extended to improve the estimates by 
considering an extended Kalman ?lter in the formulation. 
(R. Roy and R. Walker, “Real-Time Flutter Identi?cation,” 
NASA-CR-3933, October 1985.) On-line methods using 
both time-domain and frequency domain characteristics of 
turbulence response data have also been formulated to 
estimate dampings. (C. L. Ruhlin et al., “Evaluation of Four 
Subcritical Response for On-Line Prediction of Flutter 
Onset in Wind Tunnel Tests,” Journal of Aircraft, Vol. 20, 
No. 10, October 1983, pp. 835—840.) These methods moni 
tored stability at test points, but they Were of limited 
usefulness for predicting the onset of aeroelastic ?utter 
because damping may be highly nonlinear as ?ight condi 
tions vary, so damping trends may indicate stability despite 
proximity to an explosive ?utter condition. An alternative 
eigenspace method Was formulated based on orthogonality 
betWeen eigenvectors, but this method uses a parameter that, 
similar to damping, indicates stability and may vary non 
linearly With ?ight condition. (D. Afolabi et al., “Flutter 
Prediction Using an Eigenvector Orientation Approach,” 
AIAA Journal, Vol. 36, No. 1, January 1998, pp. 69—74.) 

The concept of predicting the onset of ?utter by analyZing 
?ight data at subcritical airspeeds has been introduced in 
conjunction With a method for formulating a ?utter margin 
envelope. (N. H. Zimmerman and J. T. Weissenburger, 
“Prediction of Flutter Onset Speed Based on Flight Testing 
at Subcritical Speeds,” Journal of Aircraft, Vol. 1, No. 4, 
July—August 1964, pp. 190—202.) This method considered 
the interaction of tWo modes in the ?utter mechanism to 
formulate a stability parameter that varied quadratically With 
dynamic pressure. This technique has been extended to 
consider several modes interacting as the ?utter mechanism 
in order to demonstrate a prediction method for higher-order 
?utter. (S. J. Price and B. H. K. Lee, “Development and 
Analysis of Flight Flutter Prediction Methods,” AIAA 
Dynamics Specialists Conference (Dallas, Tex.) AIAA-92 
2101,April 1992, pp. 188—200; S. J. Price and B. H. K. Lee, 
“Evaluation and Extension of the Flutter-Margin Method for 
Flight Flutter Prediction,” Journal of Aircraft, Vol. 30, No. 
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3, May—June 1993, pp. 395—402; and K. E. Kadrnka, “Mul 
timode Instability Prediction Method,” AIAA Structure, 
Structural Dynamics, and Materials Conference (Orlando, 
Fla.), AIAA-85-0737, April 19185, Volume 2, pp. 453—442.) 
These ?utter margin testing techniques have been used for 
Wind tunnel and ?ight test programs. (R. M. Bennett, 
“Applications of Zimmerman Flutter-Margin Criterion to a 
Wind-Tunnel Model,” NASA-TM-84545, November 1982 
and H. KatZ et al., “F-15 Flight Flutter Test Program,” 
Flutter Testing Techniques, NASA-SP-415, October 1975, 
pp. 413—431.) HoWever, the method is of limited applica 
bility for general ?ight ?utter testing because the assump 
tions of feW modes coupling and the requirement to observe 
those modes may be too restrictive. 

Stability parameters Were also introduced in determining 
?utter margins that consider an autoregressive moving aver 
age process to describe the aeroelastic dynamics. One 
parameter Was based on determinants from a stability cri 
terion for discrete-time systems that are excited by random 
turbulence. MatsuZaki and Y. Ando, “Estimation of 
Flutter Boundary from Random Responses Due to Turbu 
lence at Subcritical Speeds,” Journal of Aircraft, Vol. 18, 
No. 10, October 1981, pp. 862—868 and Y. MatsuZaki and Y. 
Ando, “Divergence Boundary Prediction from Random 
Responses; NAS’s Method,” Journal of Aircraft, Vol. 21, 
No. 6, June 1984, pp. 435—436.) A similar parameter Was 
developed by extending the determinant method to consider 
short data segments With assumptions of local stationarity. 
(Y. MatsuZaki and Y. Ando, “Flutter and Divergence Bound 
ary Prediction from Nonstationary Random Responses at 
Increasing Speeds,” AIAA Structures, Structural Dynamics, 
and Materials Conference (Orlando, Fla.), AIAA-85-0691, 
April 1985, Vol. 2, pp. 313—320.) Another extension to this 
method derived a similar stability parameter but relaxed the 
requirements for stationariness. Torii and Y. MatsuZaki, 
“Flutter Boundary Prediction Based on Nonstationary Data 
Measurement,” Journal of Aircraft, Vol. 34, No. 3, May 
—June 1997, pp. 427—432.) These techniques of determining 
?utter margins can be applied to complex systems and 
require only turbulence for excitation; hoWever, the ?utter 
boundary is computed by extrapolating a nonlinear function 
and may be misleading. 

In vieW of the foregoing, it is clear that in the past the 
actual ?ight envelope developed for aircraft operation is 
essentially determined only by ?ight testing. The edges of 
the envelope are points Where either the aircraft cannot ?y 
any faster because of engine limitations or, With a 15% 
margin for error, Where the damping trends indicate a ?utter 
instability may be near. After ?ight testing, the envelope thus 
empirically determined is used for regular operations. It 
Would be desirable to use both the aircraft model computa 
tions and the test ?ight data in determining ?utter margins in 
order to provide a more expanded and robust ?utter margin 
envelope. 

STATEMENT OF THE INVENTION 

An object of this invention is to improve ?ight test 
ef?ciency along With maintaining a high level of safety in 
the process of producing a robust ?utter margin envelope for 
an aircraft model. 

A further object is to provide an on-line method of 
producing a robust ?utter margin envelope that is essentially 
model based so that it not only has the desired predictive 
nature of a traditional method but also utiliZes ?ight test data 
to obtain the desired accuracy of predictive estimates. This 
combines the strengths of both the traditional p-k method 
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and the neW method of on-line estimation of the damping 
method. This neW method, referred to hereinafter as a unique 
n method of ?ight testing for ?utter margins is for on-line 
?ight test prediction based upon both analysis data of the 
aircraft model and ?ight test data in order that analysis data 
be updated during the testing procedure for continual cor 
rection of the aircraft model data. 
What is required is a robust stability approach to formu 

lating a ?utter margin envelope that considers a state-space 
model of the aircraft. This method is based on a formal 
mathematical concept of using a structured singular value, a, 
that guarantees a level of modeling errors to Which the 
aircraft is robustly stable as described in a technical paper by 
the present inventors R. C. Lind and M. J. Brenner, “Robust 
Flutter Margin Analysis that Incorporates Flight Data,” 
NASA-TP, March 1998, and presented orally on Sep. 9, 
1997, the presentation of Which has been documented by a 
technical memorandum, NASA/TM-97-206220, titled “A 
Presentation on robust Flutter Margin Analysis and a 
Flutterometer,” both of Which by this reference are incor 
porated herein. 
A realistic representation of the modeling errors can be 

formulated by describing differences betWeen predicted 
?ight and measured ?ight data. In one application of this 
invention, the method has been successfully used to com 
pute ?utter margins for an F/A-18 Hornet aircraft modi?ed 
into a Systems Research Aircraft (SRA) at NASA Dryden 
Flight Research Center. The robust ?utter margins Were 
determined form aeroelastic ?ight data to demonstrate the 
potential errors that may exist in the ?utter margins com 
puted by a traditional p-k analysis. (R. Lind and M. Brenner, 
“Robust Flutter Margins of an F/A-18 Aircraft from 
Aeroelastic Flight Data,” Journal of guidance, Control and 
Dynamics, Vol. 20, No. 3, May—June 1997, pp. 597—604.) 

In accordance With the present invention, on-line estima 
tion of ?utter margins are computed during a ?ight test in 
contrast to the prior-art ?ight ?utter testing techniques 
referred to above Which actually involve a tWo-step process 
that ?rst requires a computational analysis of the aircraft 
model to estimate off-line ?utter margins and then does a 
?ight test of the margins. Although the computational part is 
often not discussed in conjunction With the actual ?ight 
testing part, it is in fact a necessary part. 

The basic prior-art procedure that is fairly universal With 
industry and military organiZations around the World con 
sists of tWo parts: 

Part I: Pre-?ight estimate of ?utter margins 
(1) Generate a computer model that is a ‘best-guess’ of the 

aircraft model. 
(2) Compute ?utter margins for the aircraft model using 

a Well knoWn p-k method. 
(3) If margins are too small, redesign the aircraft and 

modify the computer model accordingly. Then repeat 
steps 1 and 2. 

(4) If margins are OK, ?ight test the aircraft. 
Part II: Flight test to determine envelope 
(1) Take aircraft to test point at ?ight test condition F, a 

dynamic pressure de?ned by, for example, altitude and 
airspeed. 

(2) Telemeter ?ight data to ground control room, unless 
the folloWing step 3 of this Part II can be carried out by 
computers already mounted in the aircraft. 

(3) Estimate dynamics from ?ight data such as damping. 
(4) Evaluate levels and trends of dynamics. 
(5) If trends are OK, take aircraft to a ?ight condition 

closer to last estimated aeroelastic ?utter condition 
(F,-=F+AF) and repeat steps 2, 3, and 4. 
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4 
(6) If trends at any ?ight test condition are not OK, then 

declare that condition F as a ?utter margin, a point on 
the edge of the aircraft’s safe ?ight condition envelope. 

Note that the information from the computation step (1), Part 
I, is not used during the ?ight test, Part II. Conversely, the 
information from Part II is not used during Part I. This is 
essentially Why the computational Part I is not mentioned 
When discussing ?ight testing Part II. Instead, only the 
computation of margins in Part I are used as a ?rst ?utter 
margin estimate. If the ?utter margin computation is good, 
it is assumed there are no obvious problems With the aircraft, 
but even if so, a robust ?ight envelope has still not been 
determined because the computational results can never be 
completely trusted. This is so because the model can only be 
an approximation to the real aircraft and there are often 
important oddities about the real aircraft resulting in errors 
that are not anticipated. The estimated ?utter margins that 
are then adopted as the boundaries of the safe operating 
envelope are only determined by ?ight testing in Part II 
Without any method of correcting for such unanticipated 
errors. 

Moreover, there is a dramatic risk associated With that 
?ight testing procedure because of the unreliability of look 
ing at damping trends. Damping does not smoothly change 
as an instability condition is approached; rather, the damping 
may often undergo sudden changes. Thus, the damping 
trends may seem good at ?ight condition F, but there is no 
guarantee that the damping Will not sharply change as the 
?ight condition is changed to F+AF and aeroelastic ?utter of 
the aircraft may occur. This lack of ability to predict an 
instability is the reason for the risk in ?ight ?utter testing in 
this tradition procedure. This results in a greater time and 
cost in ?ight testing because the envelope of safe operating 
conditions must be expanded more cautiously using very 
small increments of AF. 

In contrast, the present invention comprises a method 
used With a singular value, a, to predict ?ght margins from 
?ight data at successively higher dynamic pressure condi 
tions of ?ight at Which an onset of a ?utter condition Will 
occur. Thus, for given dynamic pressures, such as a given 
altitude and successively greater airspeeds, the point at 
Which aeroelastic ?utter Will occur is predicted, and the 
process is repeated for the full range of dynamic pressures 
at Which the aircraft is capable of safely operating, such as 
altitudes and airspeeds. Ideally, each ?utter margin predicted 
at a given altitude Will be the same. To expand a full 
operating envelope, the procedure is repeated at all altitudes 
at Which the aircraft is capable of operating. In the n method 
of this invention, the ?ight data is not used to estimate model 
parameters or to identify a transfer function; rather, the ?ight 
data is only used to update the uncertainty description for the 
theoretical model of the aircraft being tested. This approach 
avoids several difficulties in trying to estimate a high-order 
model from ?ight data that has loW signal-to-noise ratio but 
still accounts for time-varying dynamics by updating the 
uncertainty description to describe changing errors betWeen 
the aircraft and the nominal model. 
The stability parameter, a, that is central to this neW ?utter 

margin method is essentially linear With changes in ?ight 
condition. Consequently, instabilities can be accurately pre 
dicted. In addition, this method can easily consider realis 
tically high-order models and does not make assumptions 
about the number or type of modes that interact as the ?utter 
mechanism. The process used in a ?ight ?utter test is as 
folloWs: 

Part I: Pre-?ight estimate of ?utter margins 
(1) Generate a computer model that is ‘best-guess’ of the 

aircraft model. 
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(2) Computer ?utter margins for aircraft model using the 
Well known p-k method (optional). 

(3) Compute robust ?utter margins for aircraft model 
using the singular value p method. 

(4) If the ?ight envelope determined by computed ?ight 
margins is too small under either computation method, 
redesign aircraft and repeat steps 1, 2 and 3. 

(5) If the ?ight envelope thus computed is OK, ?ight test 
aircraft. 

Note that step 3 is What distinguishes over the prior art. 
Part II: Flight test to determine actual safe aircraft ?ight 

envelope 
(1) Take aircraft to a safe test point at ?ight test condition 

F, a dynamic pressure de?ned by, for example, altitude 
and airspeed. 

(2) Telemeter ?ight data to ground control room, unless 
the folloWing step 3 of this Part II can be carried out by 
computers already mounted on the aircraft. 

(3) Compute a predicted ?utter point Fp at a higher 
dynamic pressure using a ?utterometer algorithm based 
on both ?ight data and singular value p. 

(4) If the difference betWeen the present ?ight test con 
dition Fi and the predicted ?utter point FF is large, then 
eXpand the neXt ?ight teXt condition to F=Fi+AF and 
repeat steps 1, 2 and 3. 

(5) If the difference is small, then declare the last pre 
dicted ?utter margin FF as a point on the edge of the 
envelope. 

The algorithm is repeated for all altitudes at Which the 
aircraft is capable of operating until a completed and robust 
envelope is developed. 

The main advantage to using this y algorithm over tradi 
tional methods is that With each iteration at a neW ?ight 
condition F, a neW predicted ?utter point is determined, 
Whereas in the prior-art damping algorithms that is not the 
case. Moreover, the envelope can be expanded more con? 
dently and in greater increments of AF because there is not 
so much concern about sudden changes in damping and 
stability. The basic ?oWchart for the ?utterometer algorithm 
is as folloWs: 

1. Read ?ight dada D from test point at ?ight condition F. 
2. Generate computer model P of aircraft at F. 
3. Generate A to relate P and D. 

4. Compute analysis of (RA) using the p method. 
5. Compute prediction of ?utter margin from p, a struc 

tured singular value from step 2. 
A key point is that the ?utterometer algorithm Works by 
using both the computed model data and the ?ight data. This 
is important because using only one set of data is insuf? 
cient. The model is only an approximation, so it cannot be 
trusted completely, and the ?ight data only indicates the 
current state of the aircraft so it cannot be used alone to 
predict the ?utter margins. Using both provides robust ?utter 
margin prediction Which is most important because it 
enables the safe ?ight condition envelope to be reliably 
established Without the aircraft actually reaching or even 
closely approaching a ?utter point. Reliable prediction 
throughout the entire process of developing the ?ight enve 
lope is due to the fact that the ?utterometer algorithm uses 
?ight data to continuously update the structured singular 
value p. 

Another key point is that time-varying changes in the 
aircraft dynamics that give rise to modulating errors are 
taken into account. For eXample, the Weight of a ?ghter 
plane undergoes signi?cant changes as fuel is consumed 
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6 
during the ?ight tests, but the ?utter margins are updated 
correspondingly. This updating is essentially related to the 
manner in Which ?ight and model data are combined in 
generating an operator A that describes changes in the 
model. This is so because the structured singular value p is 
a function of the plant or system P (i.e., aircraft) and is 
de?ned by the following: 

1 
#(P) = i 

minMAyA E A, det (1 - PA) = 0 

Where: M(P)=0 if no A eXists such that det(I—PA)=0, and A=a 
structured uncertainty operator (modeling errors and 
perturbations) Which is alloWed to lie Within a norm 
bounded set such that 

is a set of perturbations such that the siZe of the perturbations 
HAHOo is i 1. This means that for robust stability of the plant, 
no perturbation A greater than siZe HAHoo§1 can destabiliZe 
the plant. Thus, the increase of p is the smallest destabiliZing 
perturbation, i.e., an eXact measure of stability. 
An algorithm is provided for updating the aircraft model 

using the uncertainty operator A during ?ight testing under 
different conditions, and a procedure that uses the structured 
singular value p to determine if the aircraft system P With its 
set of uncertainty matriX operators A is not invalidated. If so, 
the set is adjusted until it is not for robust stability of the 
system. This model validation is then used to generate 
reasonable norm bounds for a sufficient set of uncertainty 
operators scaled such that M is alWays less than unity. 
TWo separate algorithms, local and global, are provided 

for using ?ight data sets to update uncertainty operators 
associated With the aircraft plant model P. In the local 
algorithm, ?ight data at identical ?ight conditions is used. 
This is done by independently computing uncertainty 
descriptions, i.e., sets of operators A for models at different 
?ight conditions, resulting in smaller uncertainty operators 
required for subsonic plants and a less conservative Worst 
case ?utter margin. In contrast, the global algorithm uses the 
entire set of ?ight data at all ?ight conditions to generate a 
single uncertainty description, i.e., set of operators A for all 
normal aircraft models. A disadvantage is possibly more 
conservative ?utter margins, but an advantage is that the 
uncertainty description used for computing a ?utter margin 
(estimate of distance to a ?utter point) is truly a Worst case. 

Although this statement of the invention speaks of devel 
oping the ?ight envelope for neW or recon?gured aircraft by 
testing at elevations With progressively increasing airspeed 
(to progressively increase dynamic pressure) in search for 
robust ?utter margins (distance to a ?ight envelope on a 
graph of altitude versus airspeed), it should be understood 
that it is possible to hold true airspeed constant for each 
?utter margin prediction While progressively increasing 
dynamic pressure by changing altitude or Mach number 
Which is a function of air density that depends on altitude 
and air temperature. Consequently, While holding a loWer 
true airspeed constant, the computed ?utter margin may 
predict a point beloW sea level. That is a valid prediction, but 
the predicted point is outside the ?ight envelope to be 
promulgated as the universe of safe operating conditions 
With a conventional 15% margin for error at loWer altitudes. 

While the p method of computing robust ?utter margins 
has been developed for promulgating an envelope of safe 
operating conditions, it should be noted that in aircraft 
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having greater computer data processing capability the p 
method can be used With a display as a cockpit ?utterometer 
to provide the pilot With virtually real-time information 
about changes in ?utter margin in terms of altitude, airspeed 
and dynamic pressure to indicate hoW far the aircraft can 
drop before reaching a predicted ?utter condition as Well as 
damping trend to indicate When the ?utter condition is near. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates diagramatically an information ?oW 
chart for traditional and p methods to compute ?utter 
margins. 

FIG. 2 illustrates a block diagram for the small gain 
theorem. 

FIG. 3 illustrates a block diagram With uncertainty for the 
example system. 

FIG. 4 illustrates a block diagram for robust stability 
analysis of the example system using the small gain theo 
rem. 

FIG. 5a illustrates a linear fractional transformation Fu(P, 
A), and FIG. 5b illustrates a linear fractional transformation 

F1(P,A). 
FIG. 6a illustrates a family of plants P=P(I+AW) With 

input multiplicative uncertainty, FIG. 6b illustrates a family 
of plants P=P(I+AW)P With output multiplicative uncer 
tainty and FIG. 6c illustrates a family of plants P=P+AW 
With additive uncertainty. 

FIG. 7 illustrates a linear fractional transformation system 
for robust stability analysis using p. 

FIG. 8 illustrates a linear fractional transformation system 
for nominal stability analysis in the p frameWork With 
parameteriZation around perturbation in dynamic pressure. 

FIG. 9 illustrates a linear fractional transformation system 
for robust stability analysis in the p frameWork With param 
eteriZation around perturbation in dynamic pressure and 
structured uncertainty. 

FIG. 10 illustrates a linear fractional transformation sys 
tem for robust stability analysis in the p frameWork With 
parameteriZation around perturbation in dynamic pressure 
and uncertainty in structural stiffness and damping matrices. 

FIG. 11 illustrates a linear fractional transformation sys 
tem for robust stability analysis in the p frameWork With 
parameteriZation around perturbuation in dynamic pressure 
and uncertainty in AQ and BQ matrices of the state-space 
Q(s) model. 

FIG. 12 illustrates a linear fractional transformation sys 
tem describing Padé approximation to represent unsteady 
aerodynamic force matrix in the p frameWork With uncer 
tainty in lag terms. 

FIG. 13 illustrates a family of plants P=PO(I+AW) With 
input multiplicative uncertainty. 

FIG. 14 illustrates transfer functions for example system 
With multiplicative uncertainty. 

FIG. 15 illustrates a family of plants P=PO+WA With 
additive uncertainty. 

FIG. 16 illustrates transfer functions for example system 
With additive uncertainty. 

FIG. 17 illustrates linear fractional transformation system 
With nominal models and associates uncertainty operators. 

FIG. 18 illustrates system responses for hardening spring 
example. 

FIG. 19 illustrates system responses for softening spring 
example. 
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FIG. 20 illustrates system responses for hysteresis 

example. 
FIG. 21 illustrates a linear fractional transformation sys 

tem for robust stability analysis and model validation With 
forcing and measurement signals. 

FIG. 22 information ?oWchart to generate plant and 
uncertainty operators from a system model and ?ight data 
With the p method. 

FIG. 23 is a ?oW chart for the over-all p method for robust 
?utter prediction and safe ?ight envelope expansion of an 
aircraft model under test. 

DETAILED DESCRIPTION OF THE 
INVENTION 

1. INTRODUCTION 

Aeroelastic ?utter is a potentially destructive instability 
resulting from an interaction betWeen aerodynamic, inertial, 
and structural forces. The stability properties of the aeroelas 
tic dynamics must be investigated to determine a ?ight 
envelope that is clear of ?utter instabilities for neW aircraft 
designs or neW con?gurations of current aircraft. Analytical 
predictions of the onset of ?utter must be accurate to reduce 
dangers and costs associated With experimental estimation. 

Critical ?utter conditions are the points closest to the 
?ight envelope at Which ?utter instabilities occur. This 
concept of closeness is formally de?ned here as a ?utter 
pressure that considers the critical dynamic pressure for a 
constant Mach value. Obviously, different ?utter measures 
such as a ?utter speed can be de?ned because a unique 
equivalent airspeed is associated With each dynamic pres 
sure for a given Mach number; hoWever, the folloWing 
de?nition 1.0. 1 for a ?utter pressure Will be used to 
describe the critical ?utter ?ight conditions. 

De?nition 1.0.1 

A ?utter pressure in the smallest value of dynamic pres 
sure for Which an aircraft at a particular Mach number 
experiences a ?utter instability. 
The ?utter pressure is used to compute a stability margin, 

or ?utter margin, that indicates the distance betWeen the 
?utter pressure and a reference point. A common ?utter 
margin, 1“, considers the difference in dynamic pressure 
betWeen the ?utter pressure and a point on the edge of the 
?ight envelope. Another common ?utter margin, at, consid 
ers the percentage difference betWeen equivalent airspeeds 
at the ?utter condition and a point Within the ?ight envelope. 

De?nition 1.0.2 

A?utter margin relates a measure of distance betWeen the 
?ight condition associated With the ?utter pressure and a 
reference point. 
The traditional p-k method has been extensively used to 

compute ?utter margins for a variety of military and com 
mercial aircraft. J. Hassig, “An Appropriate True Damp 
ing Solution of the Flutter Equation by Determinant 
Iteration,”AIAA Journal ofAircraft, Vol. 8, No. 11, Novem 
ber 1971, pp. 885—889.) This iterative method uses an 
analytical dynamic model coupled With harmonic motion 
solutions for the unsteady aerodynamic forces. The p-k 
method predicts ?utter margins entirely from a theoretical 
model that may not accurately describe the true dynamics of 
the airplane. The resulting ?utter margins do not account for 
possible variations betWeen the model and the aircraft. 

The community studying aeroelasticity has identi?ed the 
development of improved methods for characteriZing ?utter 
margins as a vital research area. Flight testing for envelope 
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expansion incurs dramatic time and cost because stability 
margins are not computed With a high level of con?dence 
using traditional methods. The ?utter dynamics often exhibit 
an explosive behavior that results in a sudden change in 
stability for a small change in ?ight conditions. Thus, small 
errors in predicted margins could have grave consequences 
for aircraft and creWs operating near the ?utter conditions. 

Several approaches exist for characteriZing accurate ?ut 
ter margins using ?ight data generated by the aircraft. These 
data describe the true dynamics and can be used to generate 
realistic models and compute con?dent ?utter margins. 
Parameter estimation algorithms have been developed to 
directly identify an aeroelastic model from the ?ight data. 
The accuracy of the resulting model can deteriorate as the 
complexity and number of degrees of freedom of the system 
increase and signal-to-noise ratios decrease from optimal 
Wind-tunnel conditions to realistic ?ight levels. Modal ?l 
tering has been introduced in association With parameter 
estimation algorithms to simplify analysis by decoupling the 
system into a set of ?rst-order responses. This type of 
?ltering does not guarantee robustness and may not perform 
Well for systems With many closely-spaced modal natural 
frequencies that cross and shift as ?ight conditions change. 

Other approaches toWard computing con?dent ?utter mar 
gins evaluate the robustness of a stability margin With 
respect to changes in the model as an indication of the 
con?dence in that margin. A ?utter margin robust to pertur 
bations to the model is a con?dent margin because model 
inaccuracies do not affect that margin. An algorithm has 
been developed to compute the most critical ?utter margin 
With respect to ?rst-order perturbations in a model. This 
method considers only parametric perturbations and can be 
computationally expensive. A robust control frameWork has 
been adopted using a feedback structure to relate the struc 
tural model and the aerodynamic model. This approach uses 
highly conservative robustness conditions With respect to an 
uncertainty structure that may not be physically meaningful. 
A similar approach is adopted alloWing unmodeled dynam 
ics and high-order parametric perturbations based on series 
expansion. Statistical approaches are also considered to 
formulate a ?utter probability measure. These approaches 
Will converge to a robustness indicating using Monte Carlo 
simulations, but the computation time can be prohibitive for 
complex systems. The robustness measures for these per 
turbation and statistical approaches are suspect because no 
global guarantees can be made as to perturbations not 
explicitly considered by the minimiZation algorithms or the 
Monte Carlo simulations. 
An approach to computing ?utter margins that guarantees 

a level of robustness and directly accounts for ?ight data is 
presented herein. (R. Lind and M. Brenner, “Robust Flutter 
Margins of an F/A-18 Aircraft from Aeroelastic Flight 
Data,” AIAA Journal of Guidance, Control and Dynamics, 
Vol. 20, No. 3, May—June 1997, pp. 597—604.) An aeroelas 
tic model is formulated in a formal robust stability frame 
Work that uses a set of norm-bounded operators, A, to 
describe modeling errors and uncertainty. A multivariable 
robust stability measure knoWn as the structured singular 
value, a, computes ?utter pressure that are robust to the 
amount of modeling errors as determined by A. (G. J. Bales 
et al., n-Analysis and Synthesis Toolbox, Musyn Inc. and The 
MathWorks Inc., Minneapolis, Minn. and Natick, Mass., 
1995.) A robust ?utter margin problem is posed by ques 
tioning What is the largest increase in dynamic pressure for 
Which the plant is stable despite possible modeling errors 
described by A. 

Flight data are easily incorporated into the analysis pro 
cedure. The modeling errors are determined by comparing 
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transfer functions obtained by ?ight data With transfer 
functions predicted by the analytical model. The norm 
bound on A is chosen based on these observed errors. A 
model validation condition is used to ensure the A is 
suf?cient to account for multiple data sets Without being 
excessively conservative. With respect to A, a Worst-case 
?utter boundary is computed that directly accounts for ?ight 
data. 

This method illustrated diagrammatically in FIG. 1 is 
inherently different from traditional algorithms based on p-k 
methods or parameter identi?cation and robustness 
approaches. The n method uses information from both an 
analytical system model and ?ight data; traditional 
approaches use only one of these sources, namely the system 
model in the p-k method. Methods that use only an analyti 
cal model can be inaccurate, and methods that use only the 
?ight data can fail if the data are of poor quality. The n 
method uses the ?ight data to improve the analytical model 
by adding uncertainty operators. Poor quality ?ight data Will 
merely increase the difficulty of obtaining a reasonable 
uncertainty description resulting in a small A. The robust 
margins Will be similar to the nominal margins in this case, 
Which makes intuitive sense because any information 
obtained from the data should only enhance the plant model 
and improve the accuracy of the ?utter margin. 
The concept of computing robustness in ?utter margins 

has been recogniZed for its importance and has recently been 
termed a state-of-the-art research area in aeroelasticity. 
Informal measures of robustness are not necessarily useful 
because the informal measures provide no guarantee for the 
system stability. The n method is based on operator theory 
and provides a Well-de?ned concept of robustness that has a 
clear set of guarantees as to the stability properties of the 
system. 

ROBUST STABILITY 

Acommon de?nition of a signal is a Lebsegue measurable 
function that maps the space of real numbers R into R”. A 
space of such signals is denoted S. 

De?nition 2.1.1 

The space of signals that are Lebesgue measurable func 
tions is S. 

Analog measurements x(t) of physical systems are real 
vector functions of the real parameter t describing time and 
thus are valid members of the space of signals, x(t)eS. 
Values of the time parameter, Which are often arbitrarily 
numbered as a distance from some reference point, actually 
extend to positive and negative in?nity. Stability for physical 
systems must ensure stability for all values of time. A 
time-domain 2-norm is de?ned as a measure of siZe (or 
energy) for time-domain singlas x(t)eS that considers all 
time. 

De?nition 2.1.2 
The 2-norm measures the energy of a signal x(t)eS. 

One characteristic of a stable system is that only ?nite 
energy output signals are generated in response to ?nite 
energy input signals. Signals With ?nite energy are knoWn as 
“square integrable” because the integral of the square of the 



US 6,216,063 B1 
11 

signal is ?nite. The Lebsegue space of square integrable 
signals is de?ned as E£2(—OOOO). This space is also referred to 
as the in?nite-horiZon Lebesgue 2-space to denote that the 
norm uses an integral over in?nite time. 

De?nition 2.1.3 

The space EBA-00,00) consists of square integrable time 
domain signals. 

Signals associated With physical systems are only knoWn 
for values of time greater than the time at Which measure 
ments are started. Stability analysis and norm computations 
using these signals cannot use properties of the signal before 
the starting time because no information is knoWn. The 
traditional method of characteriZing these signals is to 
assume the signal is identically Zero for all times before the 
starting time. The time value at Which measurements are 
started can be chosen Without loss of generality and is 

usually chosen to be t=0. The space H2(0,OO) is de?ned as a 
subset of the in?nite-horiZon Lebesque 2-space to empha 
siZe such signals. They are identically Zero for all t<0. 

De?nition 2.1.4 

The space 22[0,OO)C§_P2(—OO, 00) consists of square inte 
grable time-domain signals that are identically Zero for all 
t<0. 

A similar space SE2(—OO,0) is de?ned for signals x(t) that 
are assumed to begin at t=-OO and are identically Zero for all 
times t=0. Thus, the integral to compute the energy for 
elements of this space considers t=-OO until t>0. 

Frequency-domain signals are often considered in stabil 
ity analysis but do not fall into the set of signals, S. These 
signals f(ju)) are complex-valued functions of the imaginary 
unit j=\/——1, and the real frequency variable 00 is expressed in 
rad/sec. The set, Sim is de?ned for frequency-domain sig 
nals. 

De?nition 2.1.5 
The space of frequency domain signals is Sim. 

(5) 

A frequency-domain 2-norm is formulated to compute a 
measure of energy. 

De?nition 2.1.6 
The 2-norm measures the energy of the signal f (n)eS]-w. 

A frequency-domain Lebesgue space?z, is de?ned for 
?nite-energy signals. 

De?nition 2.1.7 

The space S12 consists of frequency-domain signals With 
?nite energy. 

(6) 

The spaces 22(—OO,OO) and 222 are isomorphic Hilbert 
spaces under the appropriate inner produce through the 
Fourier transform, Which means the spaces have equivalent 
algebraic properties. TN relationship is used to simplify 
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notation by rarely distinguishing betWeen time-domain and 
frequency domain signals except Where the context does not 
make it clear. The notations for the 2-norm of domain and 
frequency domain are also not distinguished because the 
notations are equivalent, as demonstrated by Parseval’s 
identity. 
An important subspace of 22 is the Hardy space, 92. This 

space contains the complex variable tions that are analytic in 
the open right-half of the complex plane and have ?nite 
2-norrn. 

De?nition 2.1.8: The Hardy space, H2222, consists of the 
folloWing functions. 

H2={f(s):f(s)eQ2 and f(s) is analytic in Re(s)>0} (8) 

System Plant 
A system P is de?ned as an operator mapping the space of 

input signals Sin to the space of output signals S0,”. This 
de?nition implies that for any WESl-n and Z=PW, then ZeSOm, 

(9) 

Linear, time-invariant systems de?ned by state-space equa 
tions are considered. 

The signal x(t)eR”S is the state vector, u(t) ER’H is the input 
vector, and y(t) eR”° is the output vector. The state update 
matrix is AP eRnw’s; BF eR"‘-”"‘i determines hoW the input 
affects the states; C P eRWmS computes the outputs as a linear 
combination of states; and DP ERW‘"i is the direct 
feedthrough from inputs to outputs. The operator S={AP, 
B1,, C1,, DP} denotes the time-domain state system. 

Linear time-invariant state-space system are commonly 
represented by transfer-function operators. These function, 
P(s), are complex-valued matrices of the complex Laplace 
transform variable, s. Such a transfer-function matrix exists 
if and only if the state-space system is linear and time 
invariant. 

out 

(10) 

Stability must be considered over the in?nite-horiZon time 

lengths so that the operators used map 9.92 (-O0,00) into 32 
(-O0,00) Properties of the Fourier transform relating $22 (00,00) 
and 22 simply a state-space system, S: 222 (-OO,OO)Q§£2 
(-OOx,OO), is linear and time-invariant if and only if the 
associated transfer-function matrix P is such that y=Pu £2.92. 
This condition leads to consideration of the gain for these 
signals. 

||y||2 IIPMIIZ 
W : M2 

(12) 

This ration of 2-norms Will be ?nite if the system is stable. 
Properties of the 2-norm are used to derive a condition on 
the system transfer-function operator, P. This condition is 
referred to as an induced norm because it results from 
consideration of signal norms associated With the operator. 

The $22 induced norm is de?ned as the {H OO-norm. 

De?nition 2.2.1: De?ne the {Hm-norm for transfer-function 
operators. 
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A space of operators With ?nite fl-foo-norm is denoted as $200. 
De?nition 2.2.2: The space 20, consists of system With 

?nite fl-foo-norm. 

Transfer functions of linear time-invariant systems are stable 

if and only if Z=PW and W ail-[2 implies ZEIHZ. This impli 
cation results from the Laplace isomorphism between $22 [0, 
O0) and {H2 space. These transfer functions are shoWn to be 
analytic in the open right-half complex plane With ?nite 
fl-foo-norm. De?ne the space ‘J-Coo to contain these operators. 
De?nition 2.2.3: The space ‘J-[oo consists of transfer func 
tions of stable, linear, time-invariant system With ?nite 

{Hm-norm. 
H2={P: P is analytic in Re(s0>O and HPHQO<OQ} (15) 

A subspace éRfl-Coo is often de?ned for rational elements. 
De?nition 2.2.4: The space, mil-[00, C ‘J-COO consists of ratio 

nal elements of SI-COO. 
éRfl-C,,={P: Pail-Coo and P is rational} (16) 

Transfer-function operators of linear, time-invariant state 
space systems are rational functions of the Laplace trans 

form variable, s. These transfer functions P Emil-Coo if and 
only if P is stable such that no poles lie in the closed 

right-half plane. The space 97mm Which may appear to be 
mathematical abstraction, is thus shoWn to have a physical 

interpretation. mil-[0o is merely the operator theory repre 
sentation of stable, rational, transfer functions. 
Small Gain Theorem 

Stability of a linear time-invariant system is determined 
by location of all poles in the left-half plane. Robust stability 
in the fl-[oo and p frameWorks is determined by considering 
an interconnection of stable operators. The basis for deter 
mining stability of these interconnections of operators is the 
“small gain theorem. ” 

The small gain theorem states that a closed-loop feedback 
system of stable operators is internally stable if the loop gain 
of those operators is stable and bounded by unity. Several 
formulations of the small gain theorem are derived for 
various signals and systems. Theorem 2.3.1 presents the 
formulation used for this application. 
Theorem 2.3.1 (Small Gain Theorem): Given the feedback 
interconnection structure of FIG. 2 for stable transfer 

function operators P, A: Q2—>§€2 With P, Aeé?fl-foo; if the 
{Hoe-norm of the loop gain is bounded by unity such that 
|\PA|\oO<1, then: 

1. the closed-loop system is Well-posed and internally 
stable. 

2. a unique y, W 62200 is associated With each u eg?oo. 
This small gain theorem is overly restrictive in the sense 

of requiring P, AeéRfl-Cm. Amore general small gain theorem 
is formulated for operators not restricted to lie in the 

subspace P, Aeéllfl-foo; theorem 2.3.1 is a special case of this 
general theorem. The extended operator space in the general 
small gain theorem alloWs consideration of robustness for 
systems composed of nonlinear and time-varying operators. 
The requirement of considering stable, rational, transfer 
function operators is explicitly stated in the theorem to 
emphasiZe that the nominal aeroelastic system considered in 
this paper is assumed to be stable and the ?utter margin is 
associated With a destabiliZing perturbation to that nominal 
system. 
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The second condition in theorem 2.3.1 is associated With 

the ?rst condition guaranteeing a Well-posed and stable 
system. This uniqueness condition can be understood by 
consideration of the solution y for the loop equations shoWn 
in FIG. 2. 

The inverse term, (I-PA)‘1 has a magnitude of in?nity if 
the norm of PA is alloWed to be unity. Such a condition 
Would alloW the norm of signal y to be in?nite despite a 
norm-bounded u input signal. Restricting HPAHOO<I ensures 
the inverse term exists and a unique ?nite-norm y is gener 
ated in response to a ?nite-norm u. The issue of Well 
posedness requires this condition to hold at s=OO and is 

automatically considered by the ‘J-Coo-norm. 
Robust Stability 
The small gain theorem can be directly used to analyZe 

robust stability of a plant model With respect to a set of 
perturbations. These perturbations are used to describe 
uncertainty in the analytical plant model caused by errors 
and unmodeled dynamics. Usually, the exact value of the 
modeling error is not knoWn, but a norm-bounded, real 
scalar, ot>0, can be placed on the siZe of that error. De?ne the 
A of norm-bounded operators describing these perturbations 
that affect the plant P through a feedback relationship. 

A={A:HAHQO§OL} (18) 

The small gain theorem alloWs consideration of the entire 
set of possible modeling uncertainties as described by all 
AeA. The fl-Coo-norm of the loop gain cannot be explicitly 
computed for these systems because an in?nite number of 
loop gains PA generated by the A exists. The triangle 
inequality of norms can be used to generate a suf?cient 
condition for robust stability of P. 

llPAllwéllPllwllAllw (19) 

A condition for robust stability of the closed-loop system 
can be stated. 
Lemma 2.4.1: The plant P is robustly stable to the set of 
uncertainty perturbations, A, that enter the system as in FIG. 
2 With HAHOO§G for all AeA if 

Lemma 2.4.1 shoWs a sufficient, but not necessary, con 
dition fo robust stability. The structured singular value, p, is 
introduced in the next chapter as a less conservative measure 
of robust stability that is suf?cient and necessary. 
An excellent illustrative example has previously been 

presented to demonstrate the issue of robust stability. This 
example uses classical arguments to compute a robust sta 
bility condition for a simple system that is seen to be 
identical to the robust stability condition generated using the 
small gain theorem and lemma 2.4.1. A similar example is 
given beloW for the feedback interconnection in FIG. 3. 
The single-input and single-output elements in the nomi 

nal system model of FIG. 3 are p, Which represents the plant 
dynamics; a, Which represents actuator dynamics; and k, 
Which represents a feedback controller. Each of the nominal 
system elements are stable transfer functions contained in 

mac“, A modeling error exists on the output of the actuator 
that is represented by a multiplicative uncertainty operator, 
aestfHm, on the output of the element a. 
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The transfer function from W to Z can be computed as 
follows. 

Internal stability of the closed-loop feedback system is 
equivalent to stability of the feedback system shoWn in FIG. 
4a With the operator g=—(1+akp)_1akp. 

Because the operators 6 g eéRfl-[oo are stable, the Nyquist 
criterion determines the closed-loop system is stable if and 
only if the Nyquist plot of 6g does not encircle the —1 point. 
This stability condition is equivalent to the following norm 
condition. 

This condition is an fl-(oo-norm condition on the loop gain, 

g6. Thus, classical Nyquist arguments derive an {Hoe-norm 
condition that is equivalent to the stability condition imme 
diately formulated by applying the small gain theorem. 

closed-loop stability—>Hg6Hoo<1 (23) 

The error in the actuator command is unknown and 
possibly time-varying, so the operator 6 is used to alloW 
consideration of a range of errors. Assume the actuator is 
Weighted such that the range of errors is described by the set 
of perturbations, |\6|\m<1. Lemma 2.4.1 is used to generate a 
condition that ensures the system is robustly stable to all 
actuators errors described by 6. 

closed-loop stability<—HgHoo<1 (24) 

3. STRUCTURED SINGULAR VALUE 
Linear Fractional Transformations 

The linear fractional transformation (LFIF) is a common 
frameWork suitable for robust stability analysis using argu 
ments based on the small gain theorem. An LFT is an 
interconnection of operators arranged in a feedback con 
?guration. These operators can be constant matrices, time 
domain state-space systems, or frequency-varying transfer 
functions. Consider a linear operator PeC<01+O2>x<i1+i2> that is 
partitioned into four elements. 

P:[P11 P12] (25) P21 P22 

The LFT, FM(P,A), is de?ned as the interconnection matrix 
such that the upper loop of P is closed With the operator 
Aecilxol. 

FM(P,A) as the upper-loop LFT of P closed With A such that 

A similar LFT is de?ned as F1(P,A) to represent the 
interconnection matrix of the loWer loop of P closed With an 
operator AEC‘ZXOZ. _ _ _ 

De?nition 3.1.2: Given PEC(O1+OZ)X(‘1+‘Z) and AEC‘ZXOZ, de?ne 
FM(P,A) as the loWer-loop LFT of P closed With A such that 
y=F, (P,A) u as in FIG. 5b. 

An example of an interconnection that is common in 
stability analysis is the representation of a time dependent 
state-space system as frequency-varying transfer function. 
De?ne S as the constant matrix Whose entries are the (AP, 
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B1,, C1,, DP) matrices of a state-space realiZation. The 
transfer function can be Written as an upper-loop LFT 
involving S and the Laplace transform variable s Where 1/s 
over s is an integrator. 

(23) 
A B 

S=[ P P]: CP DP 

The LFT is a useful frameWork for analyZing complex 
systems With many feedback and series interconnections of 
operators. Property 3.1.3 shoWs the main property of LFTs 
that Will used herein. This property alloWs complex systems 
of several interconnected LFTs to be expressed as an equiva 
lent single LFT. The operators of the neW LFT are block 
structured With blocks composed of the individual operators 
of the LFTs from the original system. 
Property 3.1.3: Feedback and series interconnections of 
LFTs can be formulated as a single LFT. 

This issue of stability for LFT systems is associated With 
the concept of a Well-posed interconnection. Stability analy 
sis based on the small gain theorem given in theorem 2.3.1 
can be used to guarantee the LFT is stable and Well-posed. 
Structured Uncertainty 
The concept of uncertainty is formulated as a set of 

norm-bounded operators, A, associated With a nominal plant, 
P, through an LFT feedback relationship. A family of plants, 
{P arises through consideration of FM(P,A) for every AeA. 
The true plant model is assumed to lie Within this family of 
plants. 

Modeling the uncertainty as a norm-bounded operator can 
lead to overly conservative models. The uncertainty descrip 
tion can be made more accurate by including frequency 
information. Formulating a model of a physical system that 
is accurate at loW frequencies but less accurate for repre 
senting the system response at high frequencies is often 
possible. A frequency-varying transfer function, W, is gen 
erally associated With each uncertainty element to describe 
magnitude and phase uncertainty as it varies With frequency. 

Uncertainty can enter a system model in a linear fractional 
manner in several general Ways. TWo typical types of 
uncertainty are termed “multiplicative” and “additive” 
uncertainty. Multiplicative uncertainty can be either on the 
input or output of a system. Systems With these types of 
uncertainty are easily described in block diagram form. FIG. 
6a shoWs the LFT for a plant With input multiplicative 
uncertainty. FIG. 6b shoWs the plant With output multipli 
cative uncertainty. FIG. 6c shoWs additive uncertainty. 

Uncertainty can also be associated With speci?c elements 
of the system. These parametric uncertainties are usually 
associated With a system operator in a feedback relationship. 
The number of input and output signals of the system 
operator is increased to account for the additional feedback 
signals associated With the uncertainty operator. This opera 
tion can be demonstrated by considering P generated by a 
system With an unknoWn pole. 

3 
y : Cpx+ Dpu 

(29) 

A norm-bounded, real, scalar, uncertainty parameter 6 can 
be introduced to account for the possible variation in pole 
value. The set of plants can be Written in the LFT frameWork 
using this uncertainty operator and de?nition 3.1.1. 


































